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USE OF A VARIATIONAL METHOD TO SOLVE A HEAT CONDUCTION PROBLEM

WITH INTERNAL HEAT SOURCES

A. M. Fain
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UDC 536.2

An examination is made of Kantorovich's variational method for
analytical solution of steady heat conduction problems with internal
heat sources having a two-dimensional distribution law. A method is
described for choosing coordinate functions which satisfy the assigned
boundary condition. Dimensionless coefficients of the system of Euler
equations are introduced.

In order to formulate a whole series of topical op-
timal problems it is necessary to have available a
simple, but sufficiently accurate analytical expression
to describe the temperature field. The presence of in-
ternal heat sources with a complex two~dimensional
distribution and nontrivial boundary conditions makes
analytical solution of the heat conduction equation by
ordinary methods difficult, and the result obtained
unwieldy. The approximate variational method examined
in this paper allows solution of such problems with
minimum expenditure of effort.

The heat conduction equation for a cylinder (Fig. 1)
with internal heat sources under steady conditions and
axial symmetry has the form

Pr 1T O G
O0x? r or or? A

=0. 1)

Let the internal heat sources be assigned in the
form

Go = oy (¥) @, (1), (2)
where qq is the internal specific heat generation at the

point with coordinates x = 0, r = 0; w{(X), wy(r) are
certain given functions.

1 2

Fig. 1. Schematic of solid cylinder.

The boundary conditions are assigned in the fol-
lowing form:

x=0, L _oq—1)
Oox

st 2 -1y,
ox

r=R, ”‘“?\'ET—:(IQ(T'—T):). (3)
or

We introduce the dimensionless coordinates
T/R=P, X/sz(p’ (T—Tf)/rf=t. (4)

We also denote

a; R/h=ky, @ R/A=ky, ayR/A=Fy, R¥/AT;=q. (5)
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Fig. 2. Schematic of hollow cylinder.

Then (1) takes the form

& 1 ot 0%
— A — — 4 — J guiw, = 0. 6
a vy o dp apz—f‘f]lz (6}
The boundary conditions may correspondingly be
written as

ot
=0, L gt=0 7
P P 2 ; {7}
"
———, —— b Rot = 0 {8}
Y= gy T
p:L-@+w=& (9)
Jdo

¢

Equation (6) is the Euler-Ostrogradskii equation

Fe2 py 9 Fy —0 (10)
gy v 5y b
for the functional
p=1 y=I/R
HN A
ol o] = LI L
e, o) g § UM) \ap)
=0 320
—thwlwﬁ] pdpdy, (11

where F is the integrand function.
The solution of (6) may approximately be represented
by the sum
n

= Eui(p)'si (), (12}
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where s; () are functions subject to definition from
the condition that functional (11) attains an extremum;
uj(p) are coordinate functions which must be chosen
such that, firstly, boundary condition (9) and the sym-
metry conditions

— =10 (13)

are satisfied, and, secondly, the nature of the varia-
tion of temperature along a radius is described in a
manner close enough to the actual.

The more successful is the choice of coordinate
functions uj, the fewer terms are required in (12) to
obtain a satisfactory approximation. We shall determine
function y; as a solution of the corresponding one-
dimensional equation

duy
L —dw =0. 14
ig . dp + @y (p) (14)

The first integration gives

du 1 C
vd—1=~~——ywz(p)pdp+—l—' (15)
P p P
It follows from condition () that C; = 0. We in~
troduce the auxiliary function ®:

do 1

y w(p)odp. (16)
p

As a result of a second integration, using boundary
condition (9), we find

=®(1)_®(9)+._]§_£‘;_§L.
3

7)
It is not difficult to see that if u; is built up in the
form

w-|om-0@+ 20T as

then conditions (9) and (13) will be satisfied for any i.

In accordance with the basic idea of the variational
method applied, expression (12) should be substituted
in the functional (11) subject to minimization. Sub-
sequently, carrying out integration with respect to p,
we choose the unknown functions s; from the condition
of minimization of the functional obtained, which now
contains a function of only one variable ¥; this leads
to solution of a system of ordinary differential equa-
tions. We have

1I/R

o[ 1B

i=

n

+(25w)-2qwlw22s,u,)pdpd¢- 9)

i=1 i=1

We introduce the designation

1 1

a;= j‘ wy (p)u;pdp, a;; = 5”{“1‘9‘1?:

0 0
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du, O
by = § U Oty o g, (20)

dp app

wherei, =1, 2, ..., n.
Integrating with respect to p in the functional (19)
within the limits indicated, we obtain

iR

* as; \ :
”=OS [Za”(?isfp)*22 aSqa a¢+2b‘
+22b”,s,—2qw12 dep, (21)

where the summation is performed for i, j =1, 2,
..., N, but in the range of one sum, i # j. Func-
tional (21) must realize an extremum on the 2n-para-
metric family of curves determined from the system
of Euler equations

Fy —

1

40, (22)

which may be written in‘the general case as

TSNS

j=i j=1

— qa,, (23)

wherei=1, 2, ..., n.

Example. To find the steady temperature distribu-
tion in a solid cylinder in which the heat source gener-
ation law is given by the relation

g R

The boundary conditions are assigned in the form (3).
We designate

Gv = go€Xp (—

qR/qO - B, P'xR = u;
then

w, = exp(—pp), w,=1—Pp%

We determine the auxiliary function
4o _ 1

7
= | wyodp = - (1 —Bp?
do 95\299 2( 5%,

@ = 1(1~—5_92‘.

4 4

J

Let us restrict ourselves to one term of series (12);
then a solution of the original equation (6) should be
sought in the form

‘= [(1~92>—-—E—<1 —e+ 28 s

The system (23) is one equation, in which the coef-
ficients with mixed indices are equal to zero. We find
1

wodp~ L kS 4 6k + 12

2 3k3 '

Ouy \2 1 g
by =\ [ 2)pdp=—
" ”M)pp 2 4

0

a1 =
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ay = waulde =

Q

N
2[?_?6+

+2;ﬁ(1—%—)].

The Euler equation in this case takes the form

l 2
+163

ays] —bus; = —qexp(—upp)ay
Its solution is

S =

—— B9 [C exp (o) + Crexp(— o) + exp (— pp)l,
pPay — by

where w = vby;/ay;.

Thus, the desired temperature distribution is de—
scribed by the expression

ayg p 28
t=—M9 et — Py 2R«
b2 @y — by [( %) 4 ( o%) e ]

X [Ciexp (@) + Crexp(—— o) + exp(—p)].

The constants of integration are determined from
boundary conditions (7) and (8).

We shall examine the problem of heat conduction
for a hollow cylinder (Fig. 2). Let the boundary con~
ditions be assigned in the following form:

x=1 A g——O
ox

2T o,

ox

x=—1,

. oT

— f——

r

r=R, =ay(T —T)). (24)

To the designations of (5) we add
ro/R =105, QR/T;h=W. (25)

Then the boundary conditions, allowing for sym-
metry, finally take the following form:

zzL, _at_::o; (26)
R SR
ot

=0, — =0 27

Y F (27)
ot

p=py — =—W; (28)
dp

p=1 -ai+k3i_0 29)
ap

We seek a solution in the form

n
t = Vuprsih) +8. (30)
i=1 .
The introduction of A permits us to replace the in-

homogeneous boundary condition (28) by a homogeneous
one,

0\ ~
= Dy, — us, =0, 31
P ="D00 apg iS5 (31)
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Fig. 3. Distribution of temperature,

T (°K), in the hollow cylinder: 1 and

2) radial variation of temperature

with = 0 and ¥ = I/R = 2; 3 and 4)

axial distribution with p = py = 0.5

and p = 1; a) first approximation; b)
second; c) third.

We define A in the binomial form A = Ap -+ Bp?,
in which we shall find A and B, using the obvious
conditions

Then

A=W g (1 4 ky) —p(2 + &3)
2(1 — po) + k3 (1 — 2p,)

(32)

Retaining all the arguments presented above, we

determine u, as the solution of (14) with boundary con-
ditions (28) and (29):

m=®m—®m+mﬁ%%hm+
g_[dQU) d@@o] 63
ks | do do

It is then necessary to seek the solution of (6) for
the hollow cylinder in the form

n

= Vo — 06+ LG8+ o
—_ [ kq
do()  dd(py)
X[ dp T ]} i o

Substituting (30) into functional (11), we have

(e (S -

9 n
*b-\puz ) + (;
—¥2qw1w2 (Esiui+A)]pdpd1p. (35)

n
il
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We add one more designation to (20):

1

dA du
b, =\ == Zpdp. 36
S dp 3p pdp (36)
fa
In functional (35) we carry out integration with re-
spect to p in the limits indicated. The Euler equations
then take the form '

n n

& " .

2 ays;~= E by =0, —qua, i=1,2, ..., n). (87)
i j=i .

=

Example. To find the steady temperature distribu-
tion in a hollow cylinder with boundary conditions (24)
and the following initialdata: R = 0.10 m; A =50 keal/m.
*hr. °C; Q =3+10° keal/m?*hr; ry = 0.5m; I =0.20 m;
ag = 2500 keal/m? < hr- °C; wy = cos 0.3 x/R; Ty = 800°
K; qo =5°10° keal/m®+ hr; w, =1 ~ (3/8)(r/R).

In dimensionless coordinates the starting data take
the following form: '

W=0.75; g=1.25, wy=c0s 0.3¢, @s= 1—-2—9, by =5,
= —0,75(7o—6pY).

We find the auxiliary function (the constant multi-
plier 1/4 has been dropped)

dd(0.5)
do

3
=5 =0.8750, @(1)}= 0.8333.

The general expression for function u;, in agree-
ment with (34), will have the form

- (0L8333 — 4 %ps 4 0.4375Inp +i-0.2125 )

The coefficients of the system of Euler equations
are

a, = 0.10595 0y;=0.05695 &) = —0.65196 b,; =0.19314

Gy =0.10346 @y, = 0.05739 b, = — 0.72831 by, = 0.21623
3= 0.15753 @y = 0.05614 b, = — 1.06082 b, = 0.22338
@y = 0.09018 bus = 0.25843
033 = 0.08556 bag = 0.29621
g = 0.13018 bys = 0.37951.

With one term of the series we obtain
@338] — byysy = by — a,-1.25¢0s 0.3¢.

Its general solution is

51 = Crexp(v§) + C, exp (—m\p)_;:ﬁl 4

11

1.25a,
0.3%y, + by

where w = VBH; ayg.

The temperature distribution law takes the form

cos 0.3y,
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t = (0.8333 e +—é~ o £ 0.4375Inp +
+0.2195 ) (1.57w=[exp(1.84y) +

+ exp(— 1.849)] + 3.37 4+ 0.67 cos 0.3 } — 0.75 (7p — 66?).

With two terms of the series we obtain the system

ans; + @458, — busy — 15y = by — 1.25a, cos 0.3,
@S] 0, — bpaSy — by = by — 1.25a5 05 0.3

The temperature distribution law is
fy = (0.833 34 it %—93 +0.43751Inp + 1.0.2125 ) X

X [4.33-107° [exp (1.76y) + exp (— 1.769)]—
— 0.301 cos 4.854 - 0.342- 107" sin 4.85v -+

+ 2.72 — 0.201 cos 0.3y} + (0.8333 . —é—ps +

2
+0.43751Inp + 2-0.2125) X [ 1.74-107" [exp (1.76) 4

+ exp (— L.764)] —0.252 cos 4.85¢ -+
+ 0.285.10 " sin 4.85¢ + 2.10 +
+0.466 cos 0.3y} — 0.75 (7o — 6g%).

The curves of Fig. 3 were drawn from the calcu-
lated data. The maximum discrepancy of the results
of the first and second approximations was 15° (15/
/800+100 = 1.9%), and the discrepancy of the results
of the second and third approximations was 5-6°(6/
/8004100 = 0.75%).

The variational method examined, which reduces
the solution of the two-dimensional heat conduction
equation to the solution of a system of linear differen-
tial equations, is very simple and rapidly convergent.
The proposed means of choosing the coordinate func-
tions, and the possibility of using even simpler in-
tegrators to calculate the coefficients of the system of
Euler equations, make this method technically suit-
able.
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